In silico pathway analysis based on chromosomal instability in breast cancer patients

Author:

Kour Akeen,Sambyal VasudhaORCID,Guleria Kamlesh,Singh Neeti Rajan,Uppal Manjit Singh,Manjari Mridu,Sudan Meena

Abstract

Abstract Background Complex genomic changes that arise in tumors are a consequence of chromosomal instability. In tumor cells genomic aberrations disrupt core signaling pathways involving various genes, thus delineating of signaling pathways can help understand the pathogenesis of cancer. The bioinformatics tools can further help in identifying networks of interactions between the genes to get a greater biological context of all genes affected by chromosomal instability. Methods Karyotypic analyses was done in 150 clinically confirmed breast cancer patients and 150 age and gender matched healthy controls after 72 h Peripheral lymphocyte culturing and GTG-banding. Reactome database from Cytoscape software version 3.7.1 was used to perform in-silico analysis (functional interaction and gene enrichment). Results Frequency of chromosomal aberrations (structural and numerical) was found to be significantly higher in patients as compared to controls. The genes harbored by chromosomal regions showing increased aberration frequency in patients were further analyzed in-silico. Pathway analysis on a set of genes that were not linked together revealed that genes HDAC3, NCOA1, NLRC4, COL1A1, RARA, WWTR1, and BRCA1 were enriched in the RNA Polymerase II Transcription pathway which is involved in recruitment, initiation, elongation and dissociation during transcription. Conclusion The current study employs the information inferred from chromosomal instability analysis in a non-target tissue for determining the genes and the pathways associated with breast cancer. These results can be further extrapolated by performing either mutation analysis in the genes/pathways deduced or expression analysis which can pinpoint the relevant functional impact of chromosomal instability.

Funder

University Grants Commission

Council of Scientific and Industrial Research, India

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3