An exosome mRNA-related gene risk model to evaluate the tumor microenvironment and predict prognosis in hepatocellular carcinoma

Author:

Du Zhonghai,Han Xiuchen,Zhu Liping,Li Li,Castellano Leandro,Stebbing Justin,Peng Ling,Wang Zhiqiang

Abstract

Abstract Background The interplay between exosomes and the tumor microenvironment (TME) remains unclear. We investigated the influence of exosomes on the TME in hepatocellular carcinoma (HCC), focusing on their mRNA expression profile. Methods mRNA expression profiles of exosomes were obtained from exoRBase. RNA sequencing data from HCC patients’ tumors were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An exosome mRNA-related risk score model of prognostic value was established. The patients in the two databases were divided into high- and low-risk groups based on the median risk score value, and used to validate one another. Functional enrichment analysis was performed based on a differential gene prognosis model (DGPM). CIBERSORT was used to assess the abundance of immune cells in the TME. The correlation between the expression levels of immune checkpoint-related genes and DGPM was analyzed alongside the prediction value to drug sensitivity. Results A prognostic exosome mRNA-related 4-gene signature (DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) was constructed and validated. A prognostic nomogram had prognostic ability for HCC. The genes for this model are involved in extracellular matrix, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway. Expression of genes here had a positive correlation with immune cell infiltration in the TME. Conclusions Our study results demonstrate that an exosome mRNA-related risk model can be established in HCC, highlighting the functional significance of the molecules in prognosis and risk stratification.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3