Author:
Qu Qiang,Sun Jin-Yu,Zhang Zhen-Ye,Su Yue,Li Shan-Shan,Li Feng,Wang Ru-Xing
Abstract
AbstractCo-expression network may contribute to better understanding molecular interaction patterns underlying cellular processes. To explore microRNAs (miRNAs) expression patterns correlated with AF, we performed weighted gene co-expression network analysis (WGCNA) based on the dataset GSE28954. Thereafter, we predicted target genes using experimentally verified databases (ENOCRI, miRTarBase, and Tarbase), and overlapped genes with differentially expressed genes (DEGs) from GSE79768 were identified as key genes. Integrated analysis of association between hub miRNAs and key genes was conducted to screen hub genes. In general, we identified 3 differentially expressed miRNAs (DEMs) and 320 DEGs, predominantly enriched in inflammation-related functional items. Two significant modules (red and blue) and hub miRNAs (hsa-miR-146b-5p and hsa-miR-378a-5p), which highly correlated with AF-related phenotype, were detected by WGCNA. By overlapping the DEGs and predicted target genes, 38 genes were screened out. Finally, 9 genes (i.e. ATP13A3, BMP2, CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, SLC16A2) located at the core region in the miRNA-gene interaction network were identified as hub genes. In conclusion, our study identified 2 hub miRNAs and 9 hub genes, which may improve the understanding of molecular mechanisms and help to reveal potential therapeutic targets against AF.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference75 articles.
1. Zulkifly H, Lip GYH, Lane DA. Epidemiology of atrial fibrillation. Int J Clin Practice. 2018;72(3):e13070.
2. Rahman F, Kwan GF, Benjamin EJ. Global epidemiology of atrial fibrillation. Nat Rev Cardiol. 2014;11(11):639–54.
3. Lernfelt G, Mandalenakis Z, Hornestam B, Lernfelt B, Rosengren A, Sundh V, et al. Atrial fibrillation in the elderly general population: a 30-year follow-up from 70 to 100 years of age. Scand Cardiovasc J SCJ. 2020;54(4):232–8.
4. Johansson C, Dahlqvist E, Andersson J, Jansson JH, Johansson L. Incidence, type of atrial fibrillation and risk factors for stroke: a population-based cohort study. Clin Epidemiol. 2017;9:53–62.
5. Chen LY, Chung MK, Allen LA, Ezekowitz M, Furie KL, McCabe P, et al. Atrial fibrillation burden: moving beyond atrial fibrillation as a binary entity: a scientific statement from the American Heart Association. Circulation. 2018;137(20):e623–44.