Interactions of genetic variations in FAS, GJB2 and PTPRN2 are associated with noise-induced hearing loss: a case-control study in China

Author:

Wu Shan,Wu Zhidan,Chen Manlian,Zhong Xiangbin,Gu Haoyan,Du Wenjing,Liu Weidong,Lang Li,Wang Junyi

Abstract

Abstract Background This study aimed to screen and validate noise-induced hearing loss (NIHL) associated single nucleotide polymorphisms (SNPs), construct genetic risk prediction models, and evaluate higher-order gene-gene, gene-environment interactions for NIHL in Chinese population. Methods First, 83 cases and 83 controls were recruited and 60 candidate SNPs were genotyped. Then SNPs with promising results were validated in another case-control study (153 cases and 252 controls). NIHL-associated SNPs were identified by logistic regression analysis, and a genetic risk model was constructed based on the genetic risk score (GRS), and classification and regression tree (CART) analysis was used to evaluate interactions among gene-gene and gene-environment. Results Six SNPs in five genes were significantly associated with NIHL risk (p < 0.05). A positive dose-response relationship was found between GRS values and NIHL risk. CART analysis indicated that strongest interaction was among subjects with age ≥ 45 years and cumulative noise exposure ≥ 95 [dB(A)·years], without personal protective equipment, and carried GJB2 rs3751385 (AA/AB) and FAS rs1468063 (AA/AB) (OR = 10.038, 95% CI = 2.770, 47.792), compared with the referent group. CDH23, FAS, GJB2, PTPRN2 and SIK3 may be NIHL susceptibility genes. Conclusion GRS values may be utilized in the evaluation of the cumulative effect of genetic risk for NIHL based on NIHL-associated SNPs. Gene-gene, gene-environment interaction patterns play an important role in the incidence of NIHL.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Medical Scientific Research Foundation

Dongguan Science and Technology of Development key Program

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3