Detection of fetal trisomy and single gene disease by massively parallel sequencing of extracellular vesicle DNA in maternal plasma: a proof-of-concept validation

Author:

Zhang Weiting,Lu Sen,Pu Dandan,Zhang Haiping,Yang Lin,Zeng Peng,Su Fengxia,Chen Zhichao,Guo Mei,Gu Ying,Luo Yanmei,Hu Huamei,Lu Yanping,Chen Fang,Gao Ya

Abstract

Abstract Background During human pregnancy, placental trophectoderm cells release extracellular vesicles (EVs) into maternal circulation. Trophoblasts also give rise to cell-free DNA (cfDNA) in maternal blood, and has been used for noninvasive prenatal screening for chromosomal aneuploidy. We intended to prove the existence of DNA in the EVs (evDNA) of maternal blood, and compared evDNA with plasma cfDNA in terms of genome distribution, fragment length, and the possibility of detecting genetic diseases. Methods Maternal blood from 20 euploid pregnancies, 9 T21 pregnancies, 3 T18 pregnancies, 1 T13 pregnancy, and 2 pregnancies with FGFR3 mutations were obtained. EVs were separated from maternal plasma, and confirmed by transmission electronic microscopy (TEM), western blotting, and flow cytometry (FACS). evDNA was extracted and its fetal origin was confirmed by quantitative PCR (qPCR). Pair-end (PE) whole genome sequencing was performed to characterize evDNA, and the results were compared with that of cfDNA. The fetal risk of aneuploidy and monogenic diseases was analyzed using the evDNA sequencing data. Results EVs separated from maternal plasma were confirmed with morphology by TEM, and protein markers of CD9, CD63, CD81 as well as the placental specific protein placental alkaline phosphatase (PLAP) were confirmed by western blotting or flow cytometry. EvDNA could be successfully extracted for qPCR and sequencing from the plasma EVs. Sequencing data showed that evDNA span on all 23 pairs of chromosomes and mitochondria, sharing a similar distribution pattern and higher GC content comparing with cfDNA. EvDNA showed shorter fragments yet lower fetal fraction than cfDNA. EvDNA could be used to correctly determine fetal gender, trisomies, and de novo FGFR3 mutations. Conclusions We proved that fetal DNA could be detected in EVs separated from maternal plasma. EvDNA shared some similar features to plasma cfDNA, and could potentially be used to detect genetic diseases in fetus.

Funder

National Natural Science Foundation of China

Shenzhen Birth Defects Screening Project Lab

Shenzhen Municipal Government of China

Guangzhou Science and Technology Program key projects

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3