Clinical, genomics and networking analyses of a high-altitude native American Ecuadorian patient with congenital insensitivity to pain with anhidrosis: a case report

Author:

López-Cortés AndrésORCID,Zambrano Ana Karina,Guevara-Ramírez Patricia,Echeverría Byron Albuja,Guerrero Santiago,Cabascango Eliana,Pérez-Villa Andy,Armendáriz-Castillo Isaac,García-Cárdenas Jennyfer M.,Yumiceba Verónica,Pérez-M Gabriela,Leone Paola E.,Paz-y-Miño César

Abstract

Abstract Background Congenital insensitivity to pain with anhidrosis (CIPA) is an extremely rare autosomal recessive disorder characterized by insensitivity to pain, inability to sweat and intellectual disability. CIPA is caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene (NTRK1) that encodes the high-affinity receptor of nerve growth factor (NGF). Case presentation Here, we present clinical and molecular findings in a 9-year-old girl with CIPA. The high-altitude indigenous Ecuadorian patient presented several health problems such as anhidrosis, bone fractures, self-mutilation, osteochondroma, intellectual disability and Riga-Fede disease. After the mutational analysis of NTRK1, the patient showed a clearly autosomal recessive inheritance pattern with the pathogenic mutation rs763758904 (Arg602*) and the second missense mutation rs80356677 (Asp674Tyr). Additionally, the genomic analysis showed 69 pathogenic and/or likely pathogenic variants in 46 genes possibly related to phenotypic heterogeneity, including the rs324420 variant in the FAAH gene. The gene ontology enrichment analysis showed 28 mutated genes involved in several biological processes. As a novel contribution, the protein-protein interaction network analysis showed that NTRK1, SPTBN2 and GRM6 interact with several proteins of the pain matrix involved in the response to stimulus and nervous system development. Conclusions This is the first study that associates clinical, genomics and networking analyses in a Native American patient with consanguinity background in order to better understand CIPA pathogenesis.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3