Author:
Gürsoy Gamze,Brannon Charlotte M.,Gerstein Mark
Abstract
Abstract
Background
As pharmacogenomics data becomes increasingly integral to clinical treatment decisions, appropriate data storage and sharing protocols need to be adopted. One promising option for secure, high-integrity storage and sharing is Ethereum smart contracts. Ethereum is a blockchain platform, and smart contracts are immutable pieces of code running on virtual machines in this platform that can be invoked by a user or another contract (in the blockchain network). The 2019 iDASH (Integrating Data for Analysis, Anonymization, and Sharing) competition for Secure Genome Analysis challenged participants to develop time- and space-efficient Ethereum smart contracts for gene-drug relationship data.
Methods
Here we design a specific smart contract to store and query gene-drug interactions in Ethereum using an index-based, multi-mapping approach. Our contract stores each pharmacogenomics observation, a gene-variant-drug triplet with outcome, in a mapping searchable by a unique identifier, allowing for time and space efficient storage and query. This solution ranked in the top three at the 2019 IDASH competition. We further improve our ”challenge solution” and develop an alternate ”fastQuery” smart contract, which combines together identical gene-variant-drug combinations into a single storage entry, leading to significantly better scalability and query efficiency.
Results
On a private, proof-of-authority network, both our challenge and fastQuery solutions exhibit approximately linear memory and time usage for inserting into and querying small databases (<1,000 entries). For larger databases (1000 to 10,000 entries), fastQuery maintains this scaling. Furthermore, both solutions can query by a single field (”0-AND”) or a combination of fields (”1- or 2-AND”). Specifically, the challenge solution can complete a 2-AND query from a small database (100 entries) in 35ms using 0.1 MB of memory. For the same query, fastQuery has a 2-fold improvement in time and a 10-fold improvement in memory.
Conclusion
We show that pharmacogenomics data can be stored and queried efficiently using Ethereum blockchain. Our solutions could potentially be used to store a range of clinical data and extended to other fields requiring high-integrity data storage and efficient access.
Publisher
Springer Science and Business Media LLC
Subject
Genetics(clinical),Genetics
Reference19 articles.
1. Mayo Clinic Center for Individualized Medicine. Pharmacogenomics: Drug-Gene Alerts. https://www.mayo.edu/research/centers-programs/center-individualized-medicine/patient-care/pharmacogenomics/drug-gene-alerts. Accessed 28 May 2020.
2. Erlich Y, Narayanan A. Routes for breaching and protecting genetic privacy. Nat Rev Genet. 2014; 15:409–21.
3. Kharpal A. Blockchain is ’one of the most overhyped technologies ever,’ Nouriel Roubini says. 2018. https://www.cnbc.com/2018/03/06/blockchain-nouriel-roubini-one-of-the-most-overhyped-technologies-ever.html. Accessed 28 May 2020.
4. Kuo T, Kim H, Ohno-Machado L. Blockchain distributed ledger technologies for biomedical and health care applications. JAMIA. 2017; 24(6):1211–20.
5. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. bitcoin.org/bitcoin.pdf. Accessed 28 May 2020.
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献