1. Naehrig M, Lauter K, Vaikuntanathan V. Can Homomorphic Encryption Be Practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW ’11. New York: ACM: 2011. p. 113–124.
http://doi.acm.org/10.1145/2046660.2046682
.
2. Bos JW, Lauter K, Naehrig M. Private predictive analysis on encrypted medical data. J Biomed Inform. 2014; 50:234–243.
3. Aono Y, Hayashi T, Trieu Phong L, Wang L. Scalable and Secure Logistic Regression via Homomorphic Encryption. In: Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, CODASPY ’16. New York: ACM: 2016. p. 142–144.
http://doi.acm.org/10.1145/2857705.2857731
.
4. Xie W, Wang Y, Boker SM, Brown DE. PrivLogit: Efficient Privacy-preserving Logistic Regression by Tailoring Numerical Optimizers. CoRR. 2016;abs/1611.01170http://arxiv.org/abs/1611.01170.
5. Kim M, Song Y, Wang S, Xia Y, Jiang X. Secure logistic regression based on homomorphic encryption. IACR Cryptol ePrint Arch. 2018; 2018:14. Accessed 14 Jan 2018.