Author:
Zhang Guoshun,Liu Bin,Shang Hua,Wu Guikai,Wu Diyang,Wang Liuqing,Li Shengnan,Wang Zhiyuan,Wang Suying,Yuan Juxiang
Abstract
Abstract
Background
Serine and arginine-rich splicing factor 9 (SRSF9) has been linked to the occurrence and progression of various cancers; however, its effects and mechanism of action hepatocellular carcinoma (HCC) have not been reported. In this study, we used a bioinformatics approach and in vitro assays to evaluate the expression of SRSF9 in HCC, its prognostic value, and its underlying regulatory mechanisms, including analyses of related pathways and the role of methylation.
Methods
Transcriptomic and DNA methylation data for 357 HCC cases and 50 paratumor tissues in The Cancer Genome Atlas database were obtained. Additionally, protein expression data for cell lines and tissue samples were obtained from the Human Protein Atlas. The CMap databased was used to predict candidate drugs targeting SRSF9. Various cell lines were used for in vitro validation.
Results
SRSF9 expression was significantly elevated in HCC and was negatively regulated by its methylation site cg06116271. The low expression of SRSF9 and hypermethylation of cg06116271 were both associated with a longer overall survival time. A correlation analysis revealed ten genes that were co-expressed with SRSF9; levels of CDK4, RAN, DENR, RNF34, and ANAPC5 were positively correlated and levels of RBP4, APOC1, MASP2, HP, and HPX were negatively correlated with SRSF9 expression. The knockdown of SRSF9 in vitro inhibited the proliferation and migration of HCC cells and significantly reduced the expression of proteins in the Wnt signaling pathway (DVL2 and β-catenin) and cell cycle pathway (Cyclin D and Cyclin E). A CMap analysis identified two drugs, camptothecin and apigenin, able to target and inhibit the expression of SRSF9.
Conclusions
This study expands our understanding of the molecular biological functions of SRSF9 and cg06116271 and provides candidate diagnostic and therapeutic targets for HCC.
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics
Reference21 articles.
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-386.
2. Sim H, Knox J. Hepatocellular carcinoma in the era of immunotherapy. Curr Probl Cancer. 2018;42:40–8.
3. Setshedi M, Andersson M, Kgatle M, Roberts L. Molecular and cellular oncogenic mechanisms in hepatocellular carcinoma. S Afr Med J = = Suid-Afrikaanse tydskrif vir geneeskunde. 2018;108:41–6.
4. Cao R, Zhang J, Jiang L, Wang Y, Ren X, Cheng B, Xia J. Comprehensive analysis of prognostic alternative splicing signatures in oral squamous cell carcinoma. Front Oncol. 2020;10:1740.
5. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68-77.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献