High expression of serine and arginine-rich splicing factor 9 (SRSF9) is associated with hepatocellular carcinoma progression and a poor prognosis

Author:

Zhang Guoshun,Liu Bin,Shang Hua,Wu Guikai,Wu Diyang,Wang Liuqing,Li Shengnan,Wang Zhiyuan,Wang Suying,Yuan Juxiang

Abstract

Abstract Background Serine and arginine-rich splicing factor 9 (SRSF9) has been linked to the occurrence and progression of various cancers; however, its effects and mechanism of action hepatocellular carcinoma (HCC) have not been reported. In this study, we used a bioinformatics approach and in vitro assays to evaluate the expression of SRSF9 in HCC, its prognostic value, and its underlying regulatory mechanisms, including analyses of related pathways and the role of methylation. Methods Transcriptomic and DNA methylation data for 357 HCC cases and 50 paratumor tissues in The Cancer Genome Atlas database were obtained. Additionally, protein expression data for cell lines and tissue samples were obtained from the Human Protein Atlas. The CMap databased was used to predict candidate drugs targeting SRSF9. Various cell lines were used for in vitro validation. Results SRSF9 expression was significantly elevated in HCC and was negatively regulated by its methylation site cg06116271. The low expression of SRSF9 and hypermethylation of cg06116271 were both associated with a longer overall survival time. A correlation analysis revealed ten genes that were co-expressed with SRSF9; levels of CDK4, RAN, DENR, RNF34, and ANAPC5 were positively correlated and levels of RBP4, APOC1, MASP2, HP, and HPX were negatively correlated with SRSF9 expression. The knockdown of SRSF9 in vitro inhibited the proliferation and migration of HCC cells and significantly reduced the expression of proteins in the Wnt signaling pathway (DVL2 and β-catenin) and cell cycle pathway (Cyclin D and Cyclin E). A CMap analysis identified two drugs, camptothecin and apigenin, able to target and inhibit the expression of SRSF9. Conclusions This study expands our understanding of the molecular biological functions of SRSF9 and cg06116271 and provides candidate diagnostic and therapeutic targets for HCC.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics

Reference21 articles.

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-386.

2. Sim H, Knox J. Hepatocellular carcinoma in the era of immunotherapy. Curr Probl Cancer. 2018;42:40–8.

3. Setshedi M, Andersson M, Kgatle M, Roberts L. Molecular and cellular oncogenic mechanisms in hepatocellular carcinoma. S Afr Med J = = Suid-Afrikaanse tydskrif vir geneeskunde. 2018;108:41–6.

4. Cao R, Zhang J, Jiang L, Wang Y, Ren X, Cheng B, Xia J. Comprehensive analysis of prognostic alternative splicing signatures in oral squamous cell carcinoma. Front Oncol. 2020;10:1740.

5. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68-77.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3