EARN: an ensemble machine learning algorithm to predict driver genes in metastatic breast cancer

Author:

Mirsadeghi Leila,Haji Hosseini Reza,Banaei-Moghaddam Ali Mohammad,Kavousi Kaveh

Abstract

Abstract Background Today, there are a lot of markers on the prognosis and diagnosis of complex diseases such as primary breast cancer. However, our understanding of the drivers that influence cancer aggression is limited. Methods In this work, we study somatic mutation data consists of 450 metastatic breast tumor samples from cBio Cancer Genomics Portal. We use four software tools to extract features from this data. Then, an ensemble classifier (EC) learning algorithm called EARN (Ensemble of Artificial Neural Network, Random Forest, and non-linear Support Vector Machine) is proposed to evaluate plausible driver genes for metastatic breast cancer (MBCA). The decision-making strategy for the proposed ensemble machine is based on the aggregation of the predicted scores obtained from individual learning classifiers to be prioritized homo sapiens genes annotated as protein-coding from NCBI. Results This study is an attempt to focus on the findings in several aspects of MBCA prognosis and diagnosis. First, drivers and passengers predicted by SVM, ANN, RF, and EARN are introduced. Second, biological inferences of predictions are discussed based on gene set enrichment analysis. Third, statistical validation and comparison of all learning methods are performed by some evaluation metrics. Finally, the pathway enrichment analysis (PEA) using ReactomeFIVIz tool (FDR < 0.03) for the top 100 genes predicted by EARN leads us to propose a new gene set panel for MBCA. It includes HDAC3, ABAT, GRIN1, PLCB1, and KPNA2 as well as NCOR1, TBL1XR1, SIRT4, KRAS, CACNA1E, PRKCG, GPS2, SIN3A, ACTB, KDM6B, and PRMT1. Furthermore, we compare results for MBCA to other outputs regarding 983 primary tumor samples of breast invasive carcinoma (BRCA) obtained from the Cancer Genome Atlas (TCGA). The comparison between outputs shows that ROC-AUC reaches 99.24% using EARN for MBCA and 99.79% for BRCA. This statistical result is better than three individual classifiers in each case. Conclusions This research using an integrative approach assists precision oncologists to design compact targeted panels that eliminate the need for whole-genome/exome sequencing. The schematic representation of the proposed model is presented as the Graphic abstract. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3