Abstract
AbstractGastrointestinal Stromal Tumors (GIST) present different types of mutations that may or may not be sensitive to specific target therapy. The laboratory procedure required to prepare histological sections traditionally demands multiple steps, making the process prone to contamination by exogenous genetic material (DNA). An eventual contamination of the biological sample with exogenous DNA may jeopardize subsequent analysis of mutations. The Short Tandem Repeat (STR) technique is frequently used in forensic science fields and presents a potential application in surgical pathology, especially in situations of suspected sample exchange. In the present study, the objective is to verify the possible contamination by exogenous DNA in gastric GIST samples and to evaluate if the presence of contamination can interfere in the detection of the mutations of interest. We assessed eight gastric GISTs by the Sanger sequencing and STR sequence analyses. Seven samples presented more than one profile, a result interpreted as contamination. Our results indicate that exogenous DNA contamination occurred in most of the samples studied and that this was more frequent in samples obtained from the slides than those obtained from the block. The presence of contamination did not inhibit the detection of the mutations of interest for a specific target therapy. Furthermore, the histologic block revealed to be more advantageously when compared to the slide for molecular pathology diagnosis.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Agaimy A, Otto C, Braun A, Geddert H, Schaefer IM, Haller F (2013) Value of epithelioid morphology and PDGFRA immunostaining pattern for prediction of PDGFRA mutated genotype in gastrointestinal stromal tumors (GISTs). Int J Clin Exp Pathol 6(9):1839–1846 PMC3759490. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24040448
2. Alqaydi M, Roy R (2016) Quantitative and qualitative study of STR DNA from ethanol and formalin fixed tissues. Forensic Sci Int 262:18–29 Available from: https://www.ncbi.nlm.nih.gov/pubmed/26963697
3. Asor E, Stav MY, Simon E, Fahoum I, Sabo E, Ben-Izhak O et al (2017) Risk for molecular contamination of tissue samples evaluated for targeted anti-cancer therapy. PLoS One 12(3):e0173760
4. Barallon R, Bauer SR, Butler J, Capes-Davis A, Dirks WG, Elmore E et al (2010) Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues. In Vitro Cell Dev Biol Anim 46(9):727–732
5. Barcelos D, Franco MF, Leão SC (2008) Effects of tissue handling and processing steps on PCR for detection of mycobacterium tuberculosis in formalin-fixed paraffin-embedded samples. Rev Inst Med Trop Sao Paulo 50(6):321–326 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19082372