Bearing failure diagnosis and prognostics modeling in plants for industrial purpose

Author:

Omoregbee Henry OgbemudiaORCID,Edward Bright Aghogho,Olanipekun Mabel Usunobun

Abstract

AbstractWhen condition-based maintenance (CBM) is combined with proper decision support systems, it leads to enhanced utilization of resources and increased productivity which tends towards business efficiency. The forecasting of the future condition, the remaining operating life, or probability of stable system behavior, based on data from acquired condition monitoring is referred to as prognosis which is an important part of the CBM process. Despite auto-regression integrated moving average (ARIMA) time series modeling, being long established and dating back to the 1960s, it has surged through new advances over the years and is now recognized as a major forecasting technique. Its application is therefore investigated here in the context of the FEMTO–ST Institute (Franche-Comté Électronique Mécanique Thermique et Optique-Sciences et Technologies) bearing dataset. The work discussed in this article uses a time series approach which contributes to modeling and forecasting the remaining useful life (RUL) of bearings in plants, thereby helping to prevent catastrophic failure before it occurs. The motivation for this paper lies in the approach used in structuring the ARIMA models, thereby adding value in its application by first ensuring the stationarity of the time series signal by using the Dickey-Fuller Test, which then makes forecasting easy and accurate. The result obtained here using ARIMA is compared to the results obtained in the literature where neural network regression (NNR) was used as part of the FEMTO competition. We checked by contrasting our observations with the NNR observations obtained as well as the experimental results from the National Aeronautics and Space Administration (NASA)

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3