An enhanced stochastic error modeling using multi-Gauss–Markov processes for GNSS/INS integration system

Author:

Wu Youlong,Chen Shuai

Abstract

AbstractAngular random walk (ARW), rate random walk (RRW), and bias instability (BI) are the main noise types in inertial measurement units (IMUs) and thus determine the navigation performance of IMUs. BI is the flicker noise, which determines the noise level of an inertial sensor. The traditional error modeling approach involves modeling the ARW and BI processes as RRW or Gauss–Markov (GM) processes, and this approach is applied as a suboptimal filter in the global navigation satellite system (GNSS)/inertial navigation system (INS) extended Kalman filter (EKF). In this paper, the random error identification processes for white noise and colored noise for inertial sensors are separated using the Allan variance and power spectral density methods and the equivalence of the stochastic process differential equations of bias instability and a combination of multiple first-order GM processes are derived. A colored noise compensation method is proposed based on the enhanced EKF model. Experimental results demonstrate that, compared to traditional error models, our proposed model reduces positional drift error in dynamic testing from 195 to 49 m, enhancing positional accuracy by 40.2%. These findings confirm the potential and superiority of our method in complex navigation environments.

Funder

Postdoctoral Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3