Failure analysis of weld cracking of gas gathering pipeline in dewatering station

Author:

Chen Yong,Xie Yi,Wang Wenjing,Li Jichuan

Abstract

AbstractThere are a lot of welded joints in the shale gas collection pipeline, so the failure risk of the shale gas production line is very high. A leak has occurred in the gas collection pipeline of a dewatering station, and in order to find out the causes of failure and provide technical support for safe shale gas transmission, macroscopic analysis, non-destructive testing (X-ray flaw detection), mechanical properties, and metallurgical analysis were performed on the failed pipe section, and CFD method was used to further analyze the failure mechanism of the ring weld pipe. The macroscopic analysis yielded the weld height is significantly greater than the standard minimum requirement. Non-destructive testing showed a large number of cracks with varying degrees of extension along the weld circumference on the inner surface of the weld. The chemical composition and mechanical properties of the pipe and the weld met the requirements. The microstructure of the base metal met the standard. There are no inclusions, holes, unfused areas, or other welding defects in the weld zone. The cracks originate from the weld fusion zone, and there are a large number of intergranular microcracks. CFD simulation results show that although the stress concentration caused by the height of the weld does not directly lead to weld cracking, under the influence of the stress concentration, cracks tend to sprout at the coarse grain organization of the fusion zone on the inner surface of the weld and can easily propagate throughout the weld and pipe wall thickness, leading to crack damage. Several suggestions to prevent such a failure were proposed to avoid the occurrence of similar accidents.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3