Multi-objective design optimization of polymer spur gears using a hybrid approach

Author:

Elsiedy Marah A.ORCID,Hegazi Hesham A.,El-Kassas Ahmed M.,Zayed Abdelhameed A.

Abstract

AbstractPolymer gears are used in applications requiring small to moderate loads to effectively transmit power and use the limited place available as possible. Various commercial standards have been provided designers with the rating criteria and acquaintance of different polymer material properties for the process of design. However, the result was unsatisfactory in terms of economy, time, and the optimality of the product. Thus, classic and stochastic algorithms have been embraced to reach the best design of polymer gears. Taking advantage of the former and latter algorithm’ methods, optimal design of gears could be attained with an increased gear life span and decreased failure modes. In this study, polyoxymethylene (POM) spur gear set has been optimized combining the mathematical model from plastic standards and hybrid optimization approach of multi-objective genetic algorithm (MOGA) and sequential quadratic programming (SQP). Weight and power loss were the objective functions. Five design variables were optimized with the satisfaction of bending and contact stresses, temperature, wear, and deformation as constraints. Solutions of the problem were formulated as Pareto optimal set. The results of multi-objective were compared with previously published single-objective optimization. The results favored multi-objective optimization (82.67%, 31.39% reduction in weight and power loss respectively) as it gave the best applicable solution fitting in real life situations. The results also went hand in hand with literature confirming the efficiency of the proposed algorithm. With the variation of operating parameters, various optimal designs could be obtained where the designers can choose the design that is suitable for a particular application.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3