Multi-objective optimization of heat sink with multi-cross-ribbed-fins for a motor controller

Author:

Zhang ChaoORCID,Chen Liang,Tong Zhiting

Abstract

AbstractA novel multi-cross-ribbed-fin layout was proposed to supersede the original smooth fin to fulfill the lightweight requirement of the air-cooled heat sink for the electrical vehicle motor controller. The thermal design with multi-cross-ribbed-fins was optimized using the multi-objective optimization method to minimize the chip’s temperature rise and the weight of the heat sink simultaneously. The design variables are the number of multi-cross-ribbed-fins ranging from 12 to 24, the number of cross ribs on either side varying from 1 to 4, and cross rib height in the region of 1.00–2.50mm. The standard k-ε turbulence model was validated compared to the experimental data for the original heat sink with smooth fins. The Pareto front solution set was obtained by performing the mixed-level orthogonal design procedure with the numerical simulations, constructing the surrogated-based model with backpropagation neural net training, and implementing the genetic algorithm. The numerical results showed that the recommended optimal designs have the multi-cross-ribbed-fin number of 17–19, the number of cross ribs of 2–3, and a cross rib height of 2.13–2.50mm. The maximum decreases in the temperature rise and weight are 7.63% and 9.45%, respectively. For verifying the superiority of current optimal designs, one of the optimal designs of the heat sink, which yields comparative temperature rise of the chip but reduced weight, was selected to be experimentally tested and compared with the data for the original heat sink.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3