Study on bending fatigue performance of recycled aggregate backfill subgrade

Author:

Zehui Chen,Xiaowei Feng,Xinjun Fang,Shijun Wu

Abstract

AbstractRecycled aggregate (RA), as a backfill subgrade material, has strong reproducibility and environmental protection, which cannot only effectively reduce resource consumption and environmental pollution but also achieve recycling of resources. Therefore, a study on the bending fatigue performance of RA backfill subgrade is proposed. Based on linear elastic state, softening state, and damage accumulation state, the variation law of bending fatigue damage variables is analyzed, and the stiffness of RA under cyclic load is calculated. According to the correlation between fatigue damage corresponding to two different load links and the constitutive relationship of RA, the identification results of bending fatigue damage state based on RA backfilling subgrade is obtained. The advantages of the fatigue damage model of RA are analyzed, and the fatigue life equation is established based on the damage evolution equation. Strain, stiffness modulus, asphalt saturation, and asphalt mixture adjustment coefficient are selected as model parameters to establish the fatigue damage model of RA. The flexural bearing capacity of the double-reinforced rectangular section is calculated, and the flexural fatigue performance of RA backfill subgrade is analyzed. The test results show that the high stress level in this method leads to a sharp decline in the fatigue life of the specimen, and the influence of fatigue damage gradually appears, which is helpful to improve the durability and safety of the subgrade structure. The range of change shows a small range, which is close to the reduction coefficient result, indicating that this method has high reliability in analyzing the bending fatigue performance of RA backfill subgrade.

Funder

Supported by Zhejiang Provincial Department of Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3