The impact of a zero-flaring system on gas plants, environment, and health

Author:

Taha AymanORCID,Abdelalim Galal,AboulFotouh Tarek

Abstract

AbstractContinuous natural gas flaring wastes significant energy resources and increases greenhouse gas emissions, contributing to global warming. Our work provides an overview of a technique to recover flare gas and reduce CO2 emissions to a minimum level. There are two methods to recover flare gas: the recovery of natural gas liquids and sales gas production by existing LPG unit and the production of liquid fuels by mini-GTL unit (gas to liquid). This study was conducted using real data from the field. All cases were simulated using Aspen HYSYS software. The mini-GTL unit is modeled using an autothermal reforming method. CO2 emissions will be reduced by 107.68 tonne/day in both methods. Economic analyses revealed that the NGL and sales gas product has a net present value (NPV) of 77.03 MMUSD, while the mini-GTL product has an NPV of 73.7 MMUSD. The study showed that we could extract natural gas liquids (NGLs), including propane, LPG, and sales gas, from the flare gas or convert it to liquid products, including gasoline and diesel. The expected internal rate of return (IRR) and payout time (POT) for NGL and sales gas method are 150.73% and 0.27 years, respectively. The mini-GTL method is recommended due to Egypt’s petroleum fuel shortage and the best solution without an entry point to the Egyptian national gas grid in the plant. However, the IRR and POT for the mini-GTL method are 30.09% and 1.19 years, respectively, and it needs more CAPEX than the NGL and sales gas method. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Reference42 articles.

1. 2022 Global Gas Flaring Tracker Report. Available: https://www.worldbank.org/en/topic/extractiveindustries/publication/2022-global-gas-flaring-tracker-report. Accessed 29 Sep 2022

2. Project map | ieexi. Available: https://flaringventingregulations.worldbank.org/. Accessed 29 Sep 2022

3. Singh J (2021) Carbon dioxide: risk assessment, environmental, and health hazard. Risk assessment on the environment and human health, vol 1. pp 208–246

4. Singh J (2021) Carbon monoxide: risk assessment, environmental, and health hazard. Risk assessment on the environment and human health, vol 1. pp 247–280

5. Singh J (2021) Hydrogen sulfide: risk assessment, environmental, and health hazard. Risk assessment on the environment and human health, vol 1. pp 528–562

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3