A novel transparent cabin used in the classroom during the coronavirus pandemic: a CFD analysis

Author:

ElShimi MennatullahORCID,Morcos Samy M.,Mostafa Galal M.,Khalil Essam E.,El-Hariry Gamal A.,ElDegwy Ahmed

Abstract

AbstractA coronavirus family is a diverse group of many viruses. Coronavirus disease 19 (COVID-19) spreads when an infected person breathes out droplets and very small particles that contain the virus. These droplets and particles can be breathed in by other people or land on their eyes, noses, or mouths. In this paper, the airflow distribution and the movement of coronavirus particles during normal breathing and sneezing in classrooms have been studied using a CFD model developed in ANSYS® 2022R2. The objective is to find ways to control the spread of the virus that enable us to practice academic activity and deal normally with the pandemic and the spread of the disease. Experiments were done with more than one turbulence model to know which was closest to the experiments as well as to determine the best number of meshes in the classroom. The effect of turbulent dispersion on particles is resolved using a discrete random walk model for the discrete phase and the RANS model for the continuous phase in a coupled Eulerian–Lagrangian method. Furthermore, that is done in two scenarios: the first is to find the best ventilation configuration by investigating the following parameters: the effect of air change per hour, the height of the air inlets and outlets, and the infected student's position. The second is to control the spread of the coronavirus in the classroom in the event of sneezing from an infected student by placing cabins and an air filter with optimal design installed at the top around each student. It was found that optimal ventilation is achieved when fresh air enters from the side walls of the classroom at a distance of 1 m from the floor and the air exits from the ceiling in the form of two rows, and the rate change of air per hour (ACH) is 4, which leads to energy savings. In addition, a novel transparent cabin is designed for the student to sit in while in the classroom, consisting of a high-efficiency particulate air filter (HEPA) that collects any contamination and recirculates it from the top of the cabin back into the classroom with different fan speeds. Through this study, this cabin with a filter was successfully able to prevent any sneeze particles inside from reaching the rest of the students in the classroom.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3