A new technological approach to the granulation of slag melts of ferrous metallurgy: obtaining glassy fine-grained granules of improved quality

Author:

Sakhvadze David,Jandieri GigoORCID,Jangveladze Giorgi,Sakhvadze Giorgi

Abstract

AbstractThe technological factors required to improve the operational properties of granulated metallurgical slags demanded in the building industry have been analyzed. In order to satisfy these factors, a new technology for hydro-vacuum granulation of slag melts (HVG) has been developed. It is shown that the main advantage of the proposed HVG process is the provision of forced high-speed vortex convection of water, with the effect of vertical suction, crushing, and degassing of the three-phase (water–slag granules–water vapor) heterogeneous medium formed during the overcooling and solidification of slag. It is proved that the high-speed volumetric disintegration and overcooling with the degassing effect sharply reduces a degree of aggressive gas/vapor impact on the being cooled particles of slag, which, in turn, leads to the reduction of the perforation degree of the granules. The obtained granules are distinguished by stable fractionation and improved, well-defined dense amorphous glassy structure, the water-holding capacity of which has reduced from 45–50% to 25–13%, the actual moisture content from 24–20% to 6–4%, while the hydraulic activity in terms of CaO-uptake increased from the conventional 320–360 mg/g to 610–650 mg/g. Pilot scale research demonstrated that the designed equipment for the HVG technology allows sustainable control of the quality of granules, and it has the potential for further development and implementation.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3