Simulating creep induced moment redistribution in prestressed concrete bridges constructed by the balanced cantilever method: ad hoc traditional formulae versus real time-dependent analysis

Author:

Rashed Magdy,Mehanny Sameh S. F.

Abstract

AbstractAssessing available numerical techniques adopted to determine the design time-dependent moment for prestressed concrete segmental bridges constructed by the balanced cantilever method is of utmost importance to the bridge design community. In essence, despite some apparent diversity, there are basically two key conventional approaches to compute the design time-dependent moment accounting for creep effects for this type of bridges. The first is a family of varied simplified methods typically known to practicing designers and with pre-consensus on their reliability and effectiveness. Time-dependent moments retrieved from these classical methods always reside in an intermediate state falling between the results from “two” time-independent analysis cases, namely, (a) sequentially adding all partial permanent loads and prestressing pertaining to various construction steps using the part-bridge structural system corresponding to each step, and (b) assuming all loads and prestressing forces to be applied at-once to the final completed bridge. The second approach is through performing real sophisticated step-by-step time-dependent analysis using a specialized software. The research primary objective is to assess the validity/reliability of commonly used ad-hoc approaches that evolved over the years relying on simplified analyses/formulae to cater for time-dependent creep effects for this type of bridges. Aiming at realistic conclusions, three case-study real-world segmental balanced cantilever bridges over the Nile River in Egypt are elected. Midas Civil commercial package is used to perform time-dependent finite element analyses for the three bridges. Main parameters considered are, inter alia, time-dependent effects of creep and shrinkage of concrete, relaxation of prestressed steel, losses due to friction and anchor setting of prestressing tendons, sequence of construction, and construction-driven temporary change of support conditions (where applicable). The study concludes that creep-induced moment redistribution from simplified traditional formulae typically adopted in the literature may lead to a considerable error in estimating the design time-dependent moment in balanced cantilever bridges.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3