Performance of concrete beams partially/fully reinforced with glass fiber polymer bars

Author:

Moawad Mohamed S.ORCID,Fawzi Ahmed

Abstract

AbstractOne of the major advantages of using glass fiber-reinforced polymer bars as a replacement to the traditional steel-reinforced bars is its lightweight and high-resistant to corrosion. This research focuses on the performance of concrete beams partially/fully reinforced with glass fiber-reinforced polymer bars with 50% of GFRP bars were used to reinforce partially concrete beams at flexural zone. While 100% of GFRP bars were used to reinforce fully concrete beams at flexural and compression zones with different concrete compressive strength.This study reported the test results of 6 reinforced concrete beams with dimensions 150 × 200mm and a 1700-mm clear span length subjected to a four-point loading system. The tested beams were divided into three groups; the first one refers to the glass fiber-reinforced polymer bar effect. The second group is referring to the effect of concrete compressive strength, while the third group is referring to the effect of the GFRP bar volume ratio.Using longitudinal GFRP bars as a full or partial replacement of longitudinal steel bar reinforcement led to an increase in the failure load capacity and the average crack width, while a decrease in ductility was reported with a lower number of cracks. Increasing the concrete compressive strength is more compatible with GFRP bar reinforcement and enhanced the failure performance of beams compared with normal compressive strength concrete.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference18 articles.

1. ACI Committee 318 (2008) Building code requirements for reinforced concrete and commentary. American Concrete Institute, Detroit

2. ACI 318 (2014) Building code requirements for structural concrete and commentary. American Concrete Institute (ACI), Farmington Hills, MI

3. BS EN 1992 (2004) Design of concrete structures. In: Part 1-1: general rules and rules for buildings. European Committee for Standardization (CEN), Euro code 2, Brussels

4. ECP-203-2018 (2018) Egyptian code of practice for design and construction of reinforced concrete structures fourth edition.Concrete structures research institute, Housing and Building National Research Center, Giza, Egypt

5. CSA-S6-00 (2000) Canadian highway bridge design code (CHBDC). Section 16. In: Fiber reinforced structures. Canadian Standards Association, Rexdale (Canada), p 177

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3