Process simulation, optimization, and cost analysis of a proposed sulfur recovery unit by applying modified Claus technology

Author:

Medhat Ahmed,Shehata Walaa,Gad Fatma,Bhran Ahmed

Abstract

AbstractRemoving sour gas from any suitable gas sweetening technology in a cost-effective and environmentally responsible manner is a major challenge. This paper discusses how to safely and economically dispose of small amounts of acid gases resulting from the amine sweetening process. A two-stage Claus desulfurization unit was studied and simulated to treat acid gases resulting from natural gas sweetening operations in Ras Gharib oil fields (Egypt). These acid gases are used as feedstock for the proposed plant to produce a valuable product, such as elemental sulfur, which is used as a raw material in many industries. Although many sulfur recovery techniques are available for various conditions and applications, the Claus process is a critical and widely used method for recovering elemental sulfur from gaseous hydrogen sulfide. This work represents the potential benefits of treating acid gases with high hydrogen sulfide content. In addition, operational variables that could affect sulfur production and sulfur recovery efficiency of the studied Claus unit were studied and optimized. Aspen HYSYS simulation software (version 9) was used to evaluate the economic aspects and optimize the operational parameters of the unit for producing sulfur from acid background gases. The results showed that the maximum sulfur production was achieved at a catalytic converter reactor temperature of 270 °C and 210 °C for the first and second catalytic reactor, respectively, with an air flow rate of 933.3 kg mol/h. The economic study of the proposed desulfurization unit showed that the Claus unit would be economically acceptable with an expected return on investment of approximately 10% and an average payback period of 10 years. Moreover, the introduced plant has a positive impact on the environment by reducing the concentration of hydrogen sulfide in the gas from 69.58 to 0.16%.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3