Investigation of mechanical properties of high-performance concrete via optimized neural network approaches

Author:

Wang Xuyang,Cong Rijie

Abstract

AbstractIn this paper, an artificial intelligence approach has been employed to analyze the slump and compressive strength (CS) of high-performance concrete (HPC), focusing on its mechanical properties. The importance of assessing these critical concrete characteristics has been widely acknowledged by experts in the field, leading to the development of innovative methods for estimating parameters that typically require laboratory testing. These intelligent techniques improve the accuracy of mechanical property predictions and reduce the resource-intensive and costly nature of experimental work. The radial basis function neural network (RBFNN) is the foundational model for predicting the mechanical attributes of various HPC mixtures. To fine-tune the RBFNN’s performance in replicating the mechanical properties of HPC samples, two optimization algorithms, namely the Golden Eagle Optimizer (GEO) and Dynamic Arithmetic Optimization Algorithm (DAOA), have been employed. In this manner, both RBGE and RBDA models were trained using a dataset comprising 181 HPC samples that included superplasticizers and fly ash. The results show that DAOA has significantly improved the base model’s predictive capability, achieving a higher correlation with a value R2 of 0.936 when estimating slump. Furthermore, RBDA exhibited a more favorable root mean square error (RMSE) in predicting compressive strength compared to RBGE, with a notable 16% difference. Ultimately, both integrated models demonstrated their effectiveness in accurately modeling the mechanical properties of HPC.

Funder

Research on the promotion strategy of ecological livable city in Jilin City based on collaborative governance theory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3