SWARA-CoCoSo method-based parametric optimization of green dry milling processes

Author:

Das Partha Protim,Chakraborty ShankarORCID

Abstract

AbstractAttaining green environment for various machining processes has now caught the attention of many manufacturing industries. The input parameters involved in those machining processes are mainly responsible for achieving the desired performance as they are directly related to the process outputs. Hence, proper selection of the input process parameters becomes vital for having sustainable machining environment. In this paper, an integrated application of step-wise weight assessment ratio analysis (SWARA) and combined compromise solution (CoCoSo) methods is presented to identify the optimal parametric combinations of two green dry milling processes. In the first example, cutting speed, depth of cut, feed rate and nose radius are treated as the input parameters, while power factor, electric consumption and surface roughness are the responses. On the other hand, in the second example, cutting speed, feed rate, depth of cut and width of cut, and surface roughness, active cutting energy and material removal rate are respectively considered as the input parameters and responses. Instead of considering equal weights, SWARA method assigns relative subjective importance to the responses based on the preference set by the decision-makers, while CoCoSo ranks the experimental trials from the best to the worst. The derived optimal parametric settings are finally analyzed using the developed regression equations. It is observed that SWARA-CoCoSo method outperforms the other popular optimization techniques in identifying the best parametric intermixes for the green dry milling processes for having improved machining performance with minimal environmental effect.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3