Author:
Shekar Padala Raja,Mathew Aneesh
Abstract
AbstractThe Murredu watershed in Telangana State was chosen for the morphometric and land use/land cover (LULC) analysis in this current study. Geographical information system (GIS) and remote sensing (RS) techniques can estimate the morphometric features and LULC analysis of a catchment. A total of fourteen sub-watersheds (SWs) were created from the watershed (SW 1 to SW 14), and sub-watersheds were prioritized based on morphometric and LULC features. Evaluation of various morphometric characteristics such as linear aspects, relief aspects, and aerial aspects has been carried out for every sub-watershed to prefer ranking. Four parameters were utilized for the LULC analysis to rank and prioritize sub-watersheds. The sub-watersheds were categorized into three groups as low, medium, and high, for soil and water conservation priority based on morphometric and LULC analysis. Using morphometric analysis, higher priorities have been assigned to SW 12 and SW 1, while using LULC analysis, higher priorities have been assigned to SW 9 and SW 11. SW 10 and SW 13 are the most common sub-watersheds that fall within the same priority while using morphometric and LULC analysis. The coefficient of regression results reveals that stream length and stream order, and also stream number and stream order, have a strong association. The deployment of soil and water conservation measures may be conducted in the high-priority sub-watersheds.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. AbdelRahman MAE, Natarajan A, Hegde R, Prakash SS (2019) Assessment of land degradation using comprehensive geostatistical approach and remote sensing data in GIS-model builder. Egypt J Remote Sens Space Sci 22:323–334
2. Abdeta GC, Tesemma AB, Tura AL, Atlabachew GH (2020) Morphometric analysis for prioritizing sub-watersheds and management planning and practices in Gidabo Basin, Southern Rift Valley of Ethiopia. Appl Water Sci 10:158
3. Agarwal CS (1998) Study of drainage pattern through aerial data in Naugarh area of Varanasi district, U.P. J Indian Soc Remote Sensing 26:169–175. https://doi.org/10.1007/BF02990795
4. Aravinda PT, Balakrishna HB (2013) Morphometric analysis of Vrishabhavathi watershed using remote sensing and GIS. Int J Res Engin Techn 2(8):514–522 eISSN: 2319-1163 | pISSN: 2321-7308
5. Balazs B, Biro T, Dyke G, Singh SK, Szabo S (2018) Extracting water-related features using reflectance data and principal component analysis of Landsat images. Hydrol Sci J 63(2):269–284. https://doi.org/10.1080/02626667.2018.1425802
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献