Optimizing the printing parameters for dimensional accuracy of distal femur bone by using Taguchi’s method

Author:

Singh Thoudam Kheljeet,Birru Anil KumarORCID,Singh Khundrakpam Nimo

Abstract

Abstract Background Fused deposition modelling (FDM) is a popular additive manufacturing technique with capability of producing complex and integrate shapes. One of the critical aspects of FDM is the dimensional accuracy of 3D (three-dimension) printed model, especially in medical science applications, as proper fit and function with human body can prevent patient’s discomfort, complication or even harm. Objective In this research work, the optimisation of print parameters: layer height, nozzle temperature, printing speed, infill pattern and infill density for improving the dimensional accuracy of distal femur bone, an irregular and complex shaped geometry is carried out using Taguchi’s method and to study its influence using ANOVA (analysis of variance). Methodology 3D CAD (computer-aided design) model of the distal femur bone is generated from a CT (computerized tomography) scan using 3D slicer and its associated errors are corrected using Ansys SpaceClaim. The model is prepared for printing using Ultimaker Cura as per L16 orthogonal array experimental layout where TEA (trans epicondylar axis), which is the distance between the most prominent point of the lateral and medial epicondyle, is set at 45° from X-axis in XY plane, i.e. diagonally on the plane of printing bed. It is then printed with PLA (polylactic acid) filament. Length along TEA is compared accordingly with 3D CAD model. Taguchi’s method of ‘smaller the better’ is applied for reducing deviation. Further, ANOVA analysis is done on the data set and a linear regression model is also developed. Result Through Taguchi’s method, the optimum parameters were found to be triangle for infill pattern, 200 °C for nozzle temperature, 30 mm/s for nozzle speed, 0.1 mm for layer height and 40% for infill density. ANOVA analysis shows that all parameters contribute significantly with layer height being the most influential parameter, followed by infill pattern, nozzle speed, nozzle temperature and infill density. Mathematical model through multiple linear regression method was developed with determination of coefficient value of 96.91% and standard residual value is within the acceptable range of ± 2 indicating that there is no outliner in the data.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3