Flexural performance of T-shape light-weight concrete filled steel tubular girder

Author:

El-Kherbawy Mohamed Emam,Morsy Alaa M.,Abdel-Ghaffar Maheeb,Khalifa Yasser A.

Abstract

AbstractThis paper proposes an optimization study for both structure and materials to obtain an affordable, long-span, light-weight, and fast-constructing T-shape lightweight concrete-filled steel tubular (LWCFST) girder in order to be used in bridge construction. This research was performed on a hollow steel tube of Steel-52 (yield limit 360 MPa), which was filled with LWC. A set of parameters had been investigated to illustrate its effect on T-shape LWCFST girder stiffness, toughness, resilience, and ultimate carrying load capacity in order to obtain an equivalent stiffness to that of the typically used precast concrete girder. Based on design codes (EN 1994-1-1/Euro code 4 and ANSI/AISC 360-10) that permit the use of LWC as a filler material, the parameters considered were: the thickness of the steel tube, compressive strength of the filler concrete, and the bond condition between the steel tube and filler lightweight concrete. The yielding and ultimate bending capacity were determined based on the interpreted failure criteria of T-shape LWCFST girder, considering non-linear analysis for both material and loads using ANSYSWORKBENCH software. The results showed that T-shape LWCFST girder can be employed as a significant relative economic alternative to a typical precast girder in the bridge construction field, thanks to its high stiffness/weight ratio. The lightweight concrete inside was effectively employed to delay the local web buckling of the steel tube to increase its bending capacity. In addition, it reduced the total self-weight of the bridge’s superstructure by 20% compared with a typical precast concrete girder. The dominant failure of T-shape LWCFST girders was found in the upper concrete slab due to the compression stress, even though the tensile cracks in the filler concrete occurred after reaching tensile yield stress in the steel tube. Additionally, increasing the value of friction coefficient between steel tube and lightweight concrete up to 0.8 was found to significantly affect the girder stiffness and has a slight effect after, no matter how high it is.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3