Fault detection model for a variable speed heat pump

Author:

Boahen SamuelORCID,Ofori-Amanfo Kwadwo Boateng,Amoabeng Kofi Owura,Ayetor Godwin,Obeng George Yaw,Opoku Richard,Dzebre Dennis Edem

Abstract

AbstractThe impact of the COVID pandemic has resulted in many people cultivating a remote working culture and increasing building energy use. A reduction in the energy use of heating, ventilation, and air-conditioning (HVAC) systems is necessary for decreasing the energy use in buildings. The refrigerant charge of a heat pump greatly affects its energy use. However, refrigerant leakage causes a significant increase in the energy use of HVAC systems. The development of refrigerant charge fault detection models is, therefore, important to prevent unwarranted energy consumption and $${CO}_{2}$$ CO 2 emissions in heat pumps. This paper examines refrigerant charge faults and their effect on a variable speed heat pump and the most accurate method between a multiple linear regression and multilayer perceptron model to use in detecting the refrigerant charge fault using the discharge temperature of the compressor, outdoor entering water temperature and compressor speed as inputs, and refrigerant charge as the output. The COP of the heat pump decreased when it was not operating at the optimum refrigerant charge, while an increase in compressor speed compensated for the degradation in the capacity during refrigerant leakage. Furthermore, the multilayer perception was found to have a higher prediction accuracy of the refrigerant charge fault with a mean square error of ± 3.7%, while the multiple linear regression model had a mean square error of ± 4.5%. The study also found that the multilayer perception model requires 7 neurons in the hidden layer to make viable predictions on any subsequent test sets fed into it under similar experimental conditions and parameters of the heat pump used in this study.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3