SRR metamaterial-based broadband patch antenna for wireless communications

Author:

Kaur PreetORCID,Bansal Sonia,Kumar Navdeep

Abstract

AbstractThis paper presents the design and analysis of a broad-band patch antenna using split ring metamaterial. The SRR metamaterial structures are embedded in a unique and novel way in the patch antenna, so that subwavelength modes get introduced in the patch cavity and a broad bandwidth antenna with good performance characteristics is obtained. A rectangular microstrip patch antenna is taken as a reference antenna, which resonates at a frequency of 5.2 GHz and has an impedance bandwidth of 70 MHz. To improve the bandwidth of the patch antenna, firstly the split ring resonator (SRR) is designed according to the reference patch antenna. The optimized SRR metamaterial is placed in between the patch and ground plane of the proposed antenna. The – 10 dB impedance bandwidth of the metamaterial-embedded proposed antenna is 1.63–4.88 GHz and has an average gain of 4.5 dB. The Prototype of the proposed antenna and reference antenna is fabricated and experimental results are obtained. Experimental and simulated results are in good agreement. The presented antenna can be used for LTE, GSM, WiMAX, Bluetooth, and other wireless applications.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ultra broadband metamaterial absorber based on metal-dielectric-metal technology for THz spectrum;Nano Communication Networks;2024-12

2. Design and Analysis of Triangular Split-Ring Resonator–Based Patch Antenna for High-Speed Terahertz Devices;Brazilian Journal of Physics;2024-09-04

3. Gain Improvement of HMSIW Antenna with SRRs;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09

4. Metamaterialbased Wide Band MIMO Antenna with Enhanced Isolation for C‐ and X‐band Applications;Microwave and Optical Technology Letters;2024-07-27

5. Design and Implementation of Penta-band Slotted Microstrip Patch Antenna for wireless applications;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3