FPGA implementation of an improved envelope detection approach for bearing fault diagnosis

Author:

Rebiai MohamedORCID,Bengharbia Billel,Maazouz Mohamed,Toumi Yassine

Abstract

AbstractThis study presents an enhanced envelope detection technique implemented on a field-programmable gate array (FPGA) to diagnose bearing faults in rotating machinery. Bearing faults frequently result in machinery breakdowns, incurring substantial downtime and maintenance expenses. In our approach, we employ the Teager energy operator (TEO) to extract the vibration signal envelope. Subsequently, we subject the envelope signal to the fast Fourier transform (FFT) to generate the envelope spectrum of the vibration signal. Finally, we further refine the envelope spectrum using TEO for a second time, resulting in a pronounced fault peak that facilitates early fault detection. We evaluate the effectiveness and performance of the proposed method using two distinct types of bearing vibration signals, one being simulated and the other measured. Our findings reveal that the suggested approach outperforms traditional envelope detection methods, leading to a substantially enhanced fault diagnosis capability. For instance, when we assess the characteristic frequency ratio (FCFR) for faults in the inner and outer rings of the bearing using the proposed method, we observe that the FCFR values are significantly elevated, ranging from 160 to 330% higher compared to the analysis performed by the TEO and HT methods. Consequently, this indicates that the proposed approach has the ability to detect faults at an earlier stage than other methods. Furthermore, the FPGA-based implementation makes it suitable for critical industrial applications where rapid fault detection is essential to prevent catastrophic failures.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3