Arthropod Taxonomy Orders Object Detection in ArTaxOr dataset using YOLOX

Author:

Mazen Fatma M. A.ORCID

Abstract

AbstractThe detection and classification of insect species represent challenging computer vision tasks that have significant applications in zoology and agriculture. Fortunately, biologists and taxonomists have developed a systematic approach to organizing organisms, which results in a hierarchical classification system. Insect classification employs a hierarchical structure that includes object detection at the order level, family classification, and species classification. However, the conventional insect identification method is time-consuming and requires the expertise of highly skilled taxonomists to identify insects accurately based on morphological characteristics. This paper presents a pioneering study on the automatic detection and classification of Arthropod Taxonomy Orders using an enhanced variant of the You Only Look Once (YOLOX) framework along with the Arthropod Taxonomy Orders Object Detection (ArTaxOr) Dataset. The proposed ArTaxOr dataset encompasses diverse arthropod species such as insects, spiders, crustaceans, centipedes, millipedes, and isopods. Moreover, some images within this dataset depict multiple species with varying sizes, shapes, and colors. Accordingly, all images are resized to 640 $$\times$$ ×  640 to ensure compliance with the requisite input image size for YOLOX. Further, mosaic augmentation is employed to enhance the model’s accuracy in recognizing small objects. Inspite of natural complexity in a majority of dataset images, the proposed YOLOX-based model attained superior mean average precision. The outcomes of this study could act as a standard against which forthcoming research in this domain could be compared or judged.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3