Predicting the compressive strength of ultra-high-performance concrete using a decision tree machine learning model enhanced by the integration of two optimization meta-heuristic algorithms

Author:

Zhou Runmiao,Tang Yuzhe,Li Hongmei,Liu Zhenni

Abstract

AbstractThe compressive strength (CS) of ultra-high-performance concrete (UHPC) hinges upon the distinct properties, quantities, and types of its constituent materials. To empirically decipher this intricate relationship, employing machine learning (ML) algorithms becomes indispensable. Among these, the decision tree (DT) stands out, adept at constructing a predictive model aligned with experimental datasets. Notably, these models demonstrate commendable accuracy, effectively paralleling experimental findings as a testament to DT’s efficacy in UHPC prediction based on input parameters. To elevate predictive precision, this study integrates two meta-heuristic algorithms: the Sea-horse Optimizer (SHO) and the Crystal Structure Algorithm (CryStAl). This integration spawns three hybrid models: DTSH, DTCS, and DT. Particularly, the DTSH model shines with remarkable R2 values, registering an impressive 0.997, coupled with an optimal RMSE of 1.746 during the training phase. This underlines the model’s unmatched predictive and generalization capabilities, setting it apart from other models cultivated in this research. In essence, the fusion of empirical experimentation, advanced ML via DT, and the strategic infusion of SHO and CryStAl, culminates in the ascension of predictive prowess within the realm of UHPC compressive strength projection.

Funder

Key Project of Scientific Research Project of the Hunan Provincial Department of Education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3