Packing optimization of practical systems using a dynamic acceleration methodology

Author:

Douglas Christopher,Huh Jae Sung,Jun Sang Ook,Kim Il YongORCID

Abstract

AbstractSystem design is a challenging and time-consuming task which often requires close collaboration between several multidisciplinary design teams to account for complex interactions between components and sub-systems. As such, there is a growing demand in industry to create better performing, efficient, and cost-effective development tools to assist in the system design process. Additionally, the ever-increasing complexity of systems today often necessitates a shift away from manual expertise and a movement towards computer-aided design tools. This work narrows the scope of the system design process by focusing on one critical design aspect: the packaging of system components. The algorithm presented in this paper was developed to optimize the packaging of system components with consideration of practical, system-level functionalities and constraints. Using a dynamic acceleration methodology, the algorithm packages components from an initial position to a final packed position inside of a constrained volume. The motion of components from initial to final positions is driven by several acceleration forces imposed on each component. These accelerations are based on physical interactions between components and their surrounding environment. Various system-level performance metrics such as center of mass alignment and rotational inertia reduction are also considered throughout optimization. Results of several numerical case studies are also presented to demonstrate the functionality and capability of the proposed packaging algorithm. These studies include packaging problems with known optimal solutions to verify the efficacy of the algorithm. Finally, the proposed algorithm was used in a more practical study for the packaging of an urban air mobility nacelle to demonstrate the algorithm’s prospective capabilities in solving real-world packaging problems.

Funder

NSERC

Publisher

Springer Science and Business Media LLC

Reference43 articles.

1. Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Boston

2. Lawler EL (1985) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, Chichester

3. Martello S, Toth P (1990) Knapsack problems; algorithms and computer implementations. Wiley, Chichester

4. Garey MR, Johnson DS (1996) Approximation algorithms for bin-packing; a survey. Approximation Algorithms for NP-Hard Problems 266:147–172. https://doi.org/10.1007/978-3-7091-2748-3_8

5. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3