Investigating the impact of a window air conditioner with H-14 HEPA filter on lessening SARS-COV-2 aerosols

Author:

Huzayyin Omar,Zaki AhmedORCID,Ali Shady

Abstract

AbstractThis research breaks new ground by proposing a unique solution to combat SARS-COV-2 aerosols: modifying a readily available window air conditioner’s indoor blower to accommodate a HEPA (high-efficiency particulate air) filter. While traditional public health measures like lockdowns and mask-wearing remain crucial, this study explores an innovative engineering approach to air purification within homes and offices. The widespread impact of COVID-19 across various sectors—agriculture, manufacturing, finance, and more—necessitates exploring diverse solutions. Current efforts to utilize HEPA filters in HVAC systems face limitations. These filters, while highly effective at capturing airborne particles, increasingly impede airflow and require substantial pressure, posing challenges for standard HVAC systems to maintain efficient operation. This study addresses this critical gap by proposing a targeted modification to a specific window air conditioner (AC) model (GJC07AF-K3RNB9D) to incorporate an H-14 HEPA filter. Utilizing cutting-edge design tool (CF-TURBO) and advanced simulation software (STARCCM +), the research will provide a new blower specifically optimized for this application. This virtual testing will meticulously evaluate the modified system’s performance, ensure optimal airflow, predict noise levels, and identify any potential design flaws before implementing the modification in a physical prototype. The success of this study could pave the way for the development of increasingly efficient and accessible HEPA-based air purification solutions for everyday use, particularly in areas with limited resources. Furthermore, this research can be a valuable foundation for future work aimed to increasingly improve indoor air quality (IAQ).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3