A robust and consistent stack generalized ensemble-learning framework for image segmentation

Author:

Faska ZahraORCID,Khrissi Lahbib,Haddouch Khalid,El Akkad Nabil

Abstract

AbstractIn the present study, we aim to propose an effective and robust ensemble-learning approach with stacked generalization for image segmentation. Initially, the input images are processed for feature extraction and edge detection using the Gabor filter and the Canny algorithms, respectively; our main goal is to determine the most feature descriptions. Subsequently, we applied the stacking generalization technique, which is generally built with two main learning levels. The first level is composed of two algorithms that give good results in the literature, namely: LightGBM (Light Gradient Boosting Machine) and SVM (support vector machine). The second level is the meta-model in which we use a predictor model that takes the base-level predictions to improve the accuracy of the final prediction. In the stacked generalization process, we use the Extreme Gradient Boosting (XGBoost); it takes as input the sub-models’ outputs to better classify each pixel of the image to give the final prediction. Today, several research works exist in the literature using different machine learning algorithms; in fact, instead of trying to find a single efficient and optimal learner, ensemble-based techniques take the advantage of each basic model; they integrate their outputs to obtain a more consistent and reliable learner. The result obtained from the models of individuals and our proposed approach is compared using a set of evaluation measures for image quality such as IoU, DSC, CC, SSIM, SAM, and UQI. The evaluation and a comparison of the results obtained showed more consistent predictions for the proposed model. Thus, we have made a comparison with some recent deep learning-based unsupervised segmentation methods. The evaluation and a comparison of the results obtained showed more coherent predictions for our stacked generalization in terms of precision, robustness, and consistency.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3