Numerical analysis of laterally loaded barrettes performance in cohesionless soils

Author:

Akl Sherif A. Y.,Ismail Abdelrahman N.,Abdelmoghni MahmoudORCID,Hegazy Yasser A.

Abstract

AbstractThis paper investigates the performance of a single and a group of laterally loaded barrettes using a series of numerical models in a three-dimensional finite element software. The simulation of laterally loaded barrettes in both directions is verified by comparing numerical predictions to field measurements previously published in the literature. This paper defines the soil wedge around the barrette sheared at a strain equivalent to the minimum shear strain value at the barrette side or higher as the effective strain wedge. The results from a suite of numerical experiments show that the size of the effective shear strain wedge remains constant at different lateral loads, soil density, barrette shape (aspect ratio), and barrette stiffness. This paper also delineates the effect of spacing in a group of barrettes on the mobilized strain wedges and the associated lateral deformations. The paper then suggests equivalent dimensions for laterally loaded barrettes to be used as input parameters in analyses using p-y curves based on the shape of the effective strain wedge. The predictions from p-y analyses are improved in all the studied cases when equivalent dimensions are used compared to the finite element computations. The paper studies the appropriate design multipliers recommended in literature to be used in the p-y curves method for laterally loaded barrette groups in single and multiple rows. Comparisons with finite element results show the validity of employing the equivalent shape dimensions in determining suitable p-multipliers.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference28 articles.

1. Pereira G, Quet FR, Vorster TEB, Wojtowitz G (2019) Overview of the dual foundation system of the Dubai Creek Tower. Proc 17th Eur Conf Soil Mech Geotech Eng. ISSMGE, Reykjavik

2. Broms BB (1964) Lateral resistance of piles in cohesionless soils. J Soil Mech Found Div 90(3):123–156

3. Randolph MF, Houlsby GT (1984) The limiting pressure on a circular pile loaded laterally in cohesive soil. Geotech 34(4):613–623. https://doi.org/10.1680/geot.1984.34.4.613

4. Briaud JL, Smith T, Meyer B (1984) Laterally loaded piles and the pressuremeter: comparison of existing methods. Texas, Texas Transp Institute

5. Smith TD (1987) Friction mobilization F-Y curves for laterally loaded piles from the pressuremeter. Proc an Int Symp Predict Perform Geotech Eng. Calgary, A.A. Balkema, Rotterdam

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3