A quantum particle swarm optimization-based optimal LQR-PID controller for load frequency control of an isolated power system

Author:

Rene Ebunle AkupanORCID,Fokui Willy Stephen Tounsi

Abstract

AbstractOne of the characteristics of a robust power grid is minimal variations in its frequency to load change or loss in generating unit(s). From the perspective of optimal control theory, the issue of load frequency control in the context of the interconnected functioning of power systems is investigated in this work, and a novel load frequency controller is proposed for a single area isolated power network. This novelty incorporates all the primary characteristics of the solutions that are based on a mixture of optimal controller designs by establishing a linear quadratic regulator optimized with quantum particle swarm optimization to design a proportional integral derivative (PID) controller unlike the conventional PID controller designs that are based on a combined Ziegler-Nichols and root locus (ZN-RL) method and manual tuning. The simulation results of the proposed controller using MATLAB show its efficacy in not only ensuring that there is no steady-state error in terms of the system frequency with load changes but also in achieving smoother transients. Following these landmark achievements, a transfer function model of the resulting power grid is constructed. The outcome of the model reveals that the system transients have been improved while keeping the intended steady-state characteristics. Furthermore, it is observed that the proposed load frequency controller has the best performance when compared with the combined ZN-RL method and the manual PID designs. This, therefore, demonstrates the superiority of the proposed design for load frequency control in power systems.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3