Shear capacity of miniature beams with continuous staggered spiral stirrups

Author:

Youssef AhmedORCID,Mawaad Shereen,Salem Hamed

Abstract

AbstractScaled-down-reinforced concrete beams with rectangular staggered continuous spiral stirrups are experimentally investigated. Scale-down RC beams were considered in the current research due to ease of construction and economic feasibility. As the brittle shear failure should be avoided, continuous research trials have been conducted to find an effective technique to improve shear failure mechanism. Twenty-two beams were investigated for shear behavior under 4-point static push-over load considering the normal stirrups and compared with continuous staggered spiral ones. Stirrup spacing, shear arm ratio a/d, and shear reinforcement configurations are the main variables. All beams were designed and scaled down to be one-eighth of the full-scale beams. To minimize the size effect of using small-scale models, mortar was used instead of conventional concrete. The focus in this study was related to improved shear capacity, dissipated energy, and shear cracks propagation. It was found that using spiral reinforcement instead of normal one leads to a significant enhancement in shear capacity and dissipated energy by 33% and 45%, respectively. Therefore, the prototype RC model expected capacities were detailed calculated considering the scale-down factor used by authors. The experimental results were compared by calculated values according to international standard and specifications.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3