Abstract
AbstractFor the characteristics of semi-rigid base asphalt pavement prone to cracking, various stress-absorption layers are applied widely by decreasing stress concentration, improving interlayer bonding and waterproofing. Existing studies on the anti-cracking effect of stress absorbing layers rarely consider top-down fatigue cracking on the outside of the boundary of the vehicle loading zone. Firstly, this paper proposes a finite element model setting a downward expansion of fatigue crack in pavement based on fracture mechanics. The influence law of modulus and thickness of stress absorbing layer on stress intensity factor of crack tip and the fatigue life of the pavement is analyzed furthermore. Numerical calculation results demonstrate that shearing stress intensity factor increases with stress absorbing layer thickness and decreases with stress absorbing layer modulus, while fatigue life of pavement grows with the modulus of the stress absorbing layer and decreases with its thickness. Sensitivity analysis indicates that the modulus of the stress absorbing layer has a greater effect on the fatigue life of the pavement relative to thickness, which offers reference for further promotion and application of stress absorbing layer.
Funder
Education and Scientific Research Project for Middle-aged and Young Teachers in Fujian Province
Research on Vocational Education Teaching Reform of Longyan city
Science and Technology Research Project of Henan Province
Key Research Project of Henan Higher Education Institutions
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献