Systematic kinetic study of magnesium production using magnesium oxide and carbonic materials at different temperatures

Author:

Zahedi HamidORCID,Farzi Nahid,Golestani Nasser

Abstract

Abstract The main goal of this study was to determine the industrially best reductant for reduction of magnesium oxide to magnesium with wood charcoal and petroleum coke (petcoke) each in molar ratio 1:1 and 1:2 (oxidant:reductant) at high temperatures. In this study, a new and reliable combination of mathematical modeling and discrete numerical optimization theory by presenting 18 “mathematical filters” not relying only on statistical quantities of fitting (contrary to many similar researches) was introduced. The purpose of these filters was the determination of correct kinetic equation and therefore, the corresponding rate coefficient from among 18 equations most used at present in the challenging field of solid state chemical kinetics. With assistance of a new and fundamental mathematical function and the obtained values of rate coefficients, the function of rate coefficient in temperature was attained. The activation energy was then calculated as a function of temperature using the general definition of activation energy and the determined function for rate coefficient. The comparison between different reducing agents in the different conditions and with relevant previous study was accomplished to determine the best reducing agent from industry standpoint. Also, the areas under experimental data were calculated numerically and utilized for method validation and comparison. It turned out finally that relying only on fitting quantities in the solid state chemical kinetics can readily lead to wrong conclusions about the correct kinetic equation and about the most suitable reducing agent. It is obvious that the erroneous calculations and wrong decisions in the laboratory scale become significant and paramount in industry and this reveals the significance of rigorous mathematical analysis. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3