A review on ultra high-performance fibre-reinforced concrete with nanomaterials and its applications

Author:

Anish V.ORCID,Logeshwari J.

Abstract

AbstractUltra high-performance concrete (UHPC) is an advanced concrete which exhibits a higher performance mostly in all aspects and has a compressive strength higher than 150 MPa. The paper reviews the usage of different types of fibres, nanomaterials, mineral admixtures, preparation techniques and the utilization of UHPC. Improved microstructure, reduced porosity and homogeneous mixing are the basic requirements of the UHPC design. Though UHPC helps in the preparation of structural members at lesser size, it requires an enormous amount of cement which is accountable for a huge CO2 emission, abrasion and cracks; hence, supplementary cementitious materials might be utilized as a limited alternative for cement without sacrificing the strength of concrete at lesser cost. The nanomaterials act as a nucleation site for the C-S–H gel formation by filling the voids and pores, thereby aiding to attain a denser microstructure for UHPC and also delaying the nucleation of the cracks at the nanoscale. The fibres used in the UHPC help in energy dissipation and also produce a bridging effect for micro- and macro-cracks. Based on the investigations, it has been found that the usage of medium hooked-end steel fibres and a hybrid combination of fibres with nanomaterials helps in improving several properties of the UHPC.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3