Effect of different geometric factors of H-shaped steel section on bi-axially loaded fully encased composite column

Author:

Rath BadrinarayanORCID,Kiflu Feven,Dereje Bewiket,Garoma Shiferaw,Kebede Kassahun,Gutema Endalkachew Mosisa

Abstract

AbstractA parametric study was conducted to investigate the influence of geometric factors on the fully encased composite column under eccentric loading about both axes of the steel section by using ABAQUS software. Thirty-six column specimens were assembled under 9 different groups by considering types of length to depth ratios (L/D ratios), three types of eccentricity to depth ratios (e/D ratios), and three types of steel contribution ratios. For validation of the model, simulations were conducted for eccentric loaded composite column test specimens from current studies and published literature. These composite columns were simulated under eccentrically applied axial load to observe the ultimate load carrying capacity, failure behavior, and axial deformation under ultimate load. Generally, these were found to greatly influence to ductility and load carrying capacity of fully encased composite column specimens. It was found that the axial load carrying capacity of the composite column was reduced with an increment of the L/D ratio up to 35%. As the e/D ratio was increased, the flexural stiffness of the column was reduced gradually. The increment of the structural steel contribution ratio increased the ductility and load-carrying capacity with a smooth decline of the post-peak region of the curve. A load-Moment interaction diagram was plotted based on EBCS EN 1994-1-1:2014 from test results.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shear resistance analysis of intermediate short columns subjected to lateral loading using numerical method;Multiscale and Multidisciplinary Modeling, Experiments and Design;2023-08-22

2. A Literature Review of Factors Affecting the Behavior of Encased Stone Columns;Geotechnical and Geological Engineering;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3