Machine learning model for the optimization and kinetics of petroleum industry effluent treatment using aluminum sulfate

Author:

Ugonabo Victor Ifeanyi,Ovuoraye Prosper EguonoORCID,Chowdhury Ahmad,Fetahi Endrit

Abstract

Abstract Small-scale preliminary studies are necessary to determine the feasibility of the machine learning (ML) algorithm and time-evolution kinetics to meet the design specification of the treatment unit. The train and test datasets were obtained from jar test experimentation on the petroleum industry effluent (PIE) sample using aluminum sulfate (AS) as the coagulant. The ML algorithm from scikit-learn was employed to determine the optimum operating condition for the removal of colloidal particles, causing turbidity in the PIE. The predictive capacity of four ML models was compared based on their statistical metrics for clean discharge. The predicted optimum condition corresponds to pH (10), dosage (0.1 g/L), and settling time (30 min) which transcends to residual turbidity ≤ 10 NTU and translates to 95% removal efficiency. The second-order AS-sweep flocculation kinetic showed that at the predicted optimum conditions, modeled rate constant of 1.33 × 10−3 L/g.min and flocculation period of 1.2 min reduced the combination of the monomer, dimmer, and trimmer class colloids from an initial 570 mg/L concentration to the residual counts of 24 mg/L corresponding to residual turbidity ≤ 10 NTU under the mixing regime 14 s−1 ≤ G ≤ 164 s−1 satisfied the EPA standard for clean effluent discharge. It incorporated the selected ML output with time-evolution and aggregation kinetics to define sedimentation tank geometry for cleaner discharge. The findings from the design-driven optimization recommended a flow rate (1000 m3s−1), coefficient of kinematic viscosity (0.841 mm/s), and the required detention time (30–60 min) to define the sedimentation tank geometry.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3