Inline induction heating for high-pressure fuel-based testing applications

Author:

Thampy Tom,Rivington Emmanuel Gospel RajORCID,Avulapati Madan Mohan,Murthy Niroop Srinivasa

Abstract

AbstractInduction heating offers numerous advantages over conventional methods for heating high-pressure fluids in hydraulic testing applications. It simplifies complex processes, mitigates the risks associated with high-pressure environments, and enhances overall safety. The design of an efficient induction heating system requires a clear understanding of its key components, including the resonant tank circuit, impedance matching and isolation stage, high-frequency inverter, driver circuitry, and controller. The configuration of the resonant circuit plays a crucial role in device ratings and control methods. To meet the demanding requirements of switching devices like IGBTs, the driver circuit must ensure high immunity to interferences and failure. Effective system design allows the heating circuit to operate close to resonant switching, minimizing switching losses and cooling requirements. This paper presents the design and development of a 4-kW induction heater specifically tailored for inline heating of aviation fuel under high pressure. The system aims to achieve a precise temperature profile for testing line-replaceable units (LRUs) used in aircraft. The design methodology encompasses the selection of the resonant tank circuit configuration, impedance matching and isolation stage, high-frequency inverter, driver circuitry, and control strategies. Through extensive simulations in LTspice and experimental measurements, power losses in different components of the power conversion circuits are assessed, and overall system efficiency is evaluated. The results demonstrate the proposed induction heating system’s remarkable energy efficiency, reduced switching losses, and improved reliability. Furthermore, a comprehensive comparison with existing designs and industry norms is presented, highlighting the distinct advantages of the proposed system in terms of cost-effectiveness, energy efficiency, material utilization, and processing time. This research contributes valuable insights into the design and optimization of induction heating systems for high-pressure fluid heating applications, providing a practical and efficient solution for the aviation industry.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3