Equilibrium, kinetics, and thermodynamics of batch adsorption of Mn(II) ions on blast furnace slag (BFS) and kaolin (KGA)

Author:

Chouchane ToufikORCID,Boukari Atmen.,Khireddine Ouahida,Chibani Sana,Chouchane Sabiha

Abstract

AbstractThis article describes the discontinuous adsorption of Mn(II) on kaolin from Guelma, Algeria (KGA), and blast furnace slag from Sider, Algeria (BFS), under the effect of various parameters, namely the contact time, the stirring speed, the pH of the medium, the solution temperature, the adsorbent dosage, the solid particle size, and the initial concentration. Also studied were the models of adsorption, namely the isotherms of adsorption, the kinetics of adsorption, and the thermodynamic study of Mn on the examined adsorbents. Characterization tests have indicated that kaolin consists essentially of hydrated aluminum silicate. The BFS is mainly composed of silicates, aluminates, lime, and magnesium oxide. The specific surface areas of kaolin and BFS calculated using the BET were defined at 134.2 and 238.6m2/g. The adsorption rate of Mn(II) on KGA and BFS is better after 50 and 60 min of contact at Vag: 150 rpm; pH: 5.2; Øs: 100 μm; T: 20 °C; Ms: 1 g, respectively. Maximum adsorption capacities are 36.76 mg/g (KGA) and 59.88 mg/g (BFS). Examination of the adsorption isotherms revealed that the Langmuir model is more appropriate to the experimental data (R2 = 0.99). The values of the Freundlich (n), Langmuir (RL), and Temkin (bt) parameters indicate that the adsorption is favorable. The kinetic examination demonstrated that the pseudo-second-order kinetic model is more adopted for the adsorption of Mn(II) on KGA and BFS (R2 = 0.99). Furthermore, the transfer of Mn(II) from the solution to the surfaces of the investigated adsorbents is controlled by external and internal diffusion. The thermodynamic study brought to light that the adsorption processes carried out were spontaneous, exothermic, and less entropic. This work showed that KGA and BFS can be used as low-cost adsorbents for the removal of Mn(II) ions in aqueous media, and BFS has higher affinities for manganese ion adsorption.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3