Enhanced radiation characteristics of regular dodecagon split ring resonator (D-SRR)-based microstrip patch antenna employing dielectric superstrate for THz applications

Author:

Benkhallouk Kaddour,Bendaoudi AminaORCID,Berka Mohammed,Mahdjoub Zoubir

Abstract

AbstractIn a world where communication requires ever faster data transmission capable of transmitting high speeds. In order to reach and transmit this high speed, it is necessary to increase the frequency that carries the information. For this, scientists are interested in the terahertz (THz) range which, thanks to its high frequencies between 0.1 THz and 30 THz, offers the possibility of increasing the data rate. This letter presents the inclusion of Dodecagon Split Ring Resonator (D-SRR) in rectangular microstrip patch antenna and its effect in the performance of the proposed antenna. The metamaterial design employs two types of SRRs resonators shapes such as the Dodecagon Broadside Coupled Split Ring Resonator (DBC-SRR) and Dodecagon Split Ring Resonator (D-SRR). The model applied uses a local field approach and allowed to obtain the dispersion characteristics of discrete negative magnetic permeability. The proposed antenna substrate uses Arlon AD1000 material, which helps to attain high gain and good directivity at THz frequency. The antenna performance is investigated with and without superstrate. The operating frequencies of the proposed antenna vary in the range of 0.66 - 0.69 THz and shows maximum gain of 10.4 dB and maximum directivity of 9.84 dB. HFSS software tool helps to simulate the parametric analysis of the proposed antenna design. This novel structure may find applications in terahertz imaging, remote systems and may find manifold possibilities in the medical field.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3