Numerical validation of pressure and flow characteristics across a control valve in a feed line

Author:

Suri NikhilORCID,K. S. Venkateswaran,T. Ramesh

Abstract

AbstractThis work is intended to understand the variation of pressure and flow at the pump inlet of liquid rocket engine. The opening and closure of the valve upstream of the pump features complex phenomenon. The opening and  closing of the valve cause pressure and flow variations at the pump inlet which may lead to combustion instabilities in combustion chamber of engine, hydraulic transients in feedlines, and off-design operation of turbo-pumps which are fundamental to the efficient testing and operation of engine. A numerical model to predict the pressure and flow transients across a control valve for different rate of opening in fluid feed systems has been developed using first-order finite difference technique. In case of flow in pipes, the velocity and pressure is governed by momentum and continuity equations. A computer code for the prediction of fluid transients is developed based on method of characteristics for one-dimensional fluid flow in pipelines and compared with test data for validation. The control valve is considered to be in-line with the feed line and modeled based on the valve coefficient vs. percent opening of valve. This model can subsequently be used to predict the effect of opening/closing time of the valve on pressure surges across the control valve and corresponding flow rate in the feedline for different opening of the valve.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference20 articles.

1. Allievi L (1902) Teoria generale del moto perturbato dell’acqua nei tubi in pressione (colpo d’ariete). (“General theory of the variable motion of water in pressure conduits”). Annali della Società degli Ingegneri ed Architetti Italiani 17(5):285–325

2. Löwy R (1928) Druckschwankungen in Druckrohrleitungen. Mit 45 Abb. Cham: Springer

3. Bergeron L (1932) Variations in flow in water conduits. Soc Hydrotechnique de France 47:605

4. Parmakian J (1955) Waterhammer analysis. prenticehall, linc., Englewood Cliffs

5. Gray CAM (1953) The analysis of the dissipation of energy in water hammer. In: Proc. ASCE, vol 119, pp 1176–1194

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3