Author:
Wang Jialiang,Chen Chen,Qian Dilei,Peng Fenfei,Yu Mengfei,Sun Yang,Peng Deping
Abstract
AbstractAccording to the seafloor drill working conditions and the complex formation characteristics of the seafloor, this paper aims to improve the adaptability of the diamond bit to the formation and the coring quality. The cutter tooth design scheme of the impregnated diamond bit is proposed, and Fluent analyzes the flow field of drilling fluid at the bottom hole. The results show that the cone cutting tooth bit with the primary and assistant nozzles can directly avoid 85.33% drilling fluid flushing core and reduce the disturbance of drilling fluid to the core samples. The water passage structure of the bit is reasonable, and the upward return velocity of the drilling fluid can be stabilized between 0.7 and 1.8 m/s, which meets the requirements of the upward return of cuttings in seabed strata, and has a good hole wall protection performance. Based on the bottom-jet diamond bit, the assistant nozzles are added. The drilling fluid of the assistant nozzles can better cover the bit crown, conductive to cooling the bit crown. The drilling fluid of the main nozzles can timely up-return along the outer annulus hole wall, conducive to the up-return of the cuttings with drilling fluid. This study can extend existing designs of a seafloor coring bits and bottom hole flow field analysis methods.
Funder
Hunan Provincial Natural Science Foundation of China
National Key R&D Program of China
National Natural Science Foundation of China
the Special Project for the Construction of an Innovative Province of Hunan
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献