Closed-loop neuromuscular electrical stimulation using feedforward-feedback control and textile electrodes to regulate grasp force in quadriplegia

Author:

Ciancibello John,King Kevin,Meghrazi Milad Alizadeh,Padmanaban Subash,Levy Todd,Ramdeo Richard,Straka Malgorzata,Bouton ChadORCID

Abstract

Abstract Background Transcutaneous neuromuscular electrical stimulation is routinely used in physical rehabilitation and more recently in brain-computer interface applications for restoring movement in paralyzed limbs. Due to variable muscle responses to repeated or sustained stimulation, grasp force levels can change significantly over time. Here we develop and assess closed-loop methods to regulate individual finger forces to facilitate functional movement. We combined this approach with custom textile-based electrodes to form a light-weight, wearable device and evaluated in paralyzed study participants. Methods A textile-based electrode sleeve was developed by the study team and Myant, Corp. (Toronto, ON, Canada) and evaluated in a study involving three able-body participants and two participants with quadriplegia. A feedforward-feedback control structure was designed and implemented to accurately maintain finger force levels in a quadriplegic study participant. Results Individual finger flexion and extension movements, along with functional grasping, were evoked during neuromuscular electrical stimulation. Closed-loop control methods allowed accurate steady state performance (< 15% error) with a settling time of 0.67 s (SD = 0.42 s) for individual finger contact force in a participant with quadriplegia. Conclusions Textile-based electrodes were identified to be a feasible alternative to conventional electrodes and facilitated individual finger movement and functional grasping. Furthermore, closed-loop methods demonstrated accurate control of individual finger flexion force. This approach may be a viable solution for enabling grasp force regulation in quadriplegia. Trial registration NCT, NCT03385005. Registered Dec. 28, 2017

Publisher

Springer Science and Business Media LLC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3